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Nonextensive thermostatistics can yield apparent magnetism
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Bacry [Phys. Lett. B 317, 523 (1993)] showed that, on the basis of a deformed Poincaré group, special
relativity yields a nonadditive energy for large systems, i.e., a total energy (of the Universe) which would not
be proportional to the number of particles. He consistently argued that this effect could explain (part of) the
so-called dark matter. By considering noninteracting spins at thermal equilibrium in the presence of an external
magnetic field, we show here that the recently introduced nonextensive (nonadditive) thermostatistics could
account for a theoretically possible “dark magnetism” (the apparent number of spins being smaller or larger

than the actual one).

PACS number(s): 05.30.—d, 95.35.+d, 05.70.Ce, 75.10.—b

For a variety of (possibly interconnected) physical rea-
sons, a large amount of work is nowadays dedicated to fun-
damentally nonlinear formalisms for physics. Two quite ac-
tive streams along this line are quantum groups (see [1,2]
and references therein) and nonextensive thermostatistics [3],
to which the present effort is dedicated. In a series of papers,
Bacry [1,2] recently pointed out a number of advantages of
introducing a deformation of the Poincaré group (leading to
‘“‘quantum special relativity’’). This new quantum group pre-
serves the main successes of the ordinary Poincaré group:
conservation laws for all momenta as well as additivity of
angular momentum remain valid. He also showed that quan-
tum special relativity can yield an interesting kinematic ef-
fect, namely a nonadditive (nonextensive) energy, in the
sense that the total energy need not be proportional to the
total number of particles, if the number of particles is large.
He then suggested [1] that, as a side benefit, this effect could
account for all (or part) of the so-called ““dark matter” of the
Universe. We show here that similar effects are obtained on a
quite different theoretical background, namely in the specific
kind of equilibrium thermostatistics just mentioned. The ef-
fect is so general that, with pedagogical advantage, it can be
illustrated in a very simple system, namely an assembly of
noninteracting spin 1/2 atoms in the presence of an external
magnetic field. This system has already been focused [4] in
order to discuss the existence of the thermodynamic limit
within nonextensive thermostatistics. We now focus on a dif-
ferent aspect, namely the theoretically possible existence of
what we shall be referring to as ‘“‘dark magnetism” (where
the apparent number of spins is smaller or larger than the
actual one).

Before we approach the magnetic system, let us briefly
review the nonextensive statistical mechanics. It is based
upon a generalized entropic form [3] for a physical system,
namely
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where k is a dimensional positive constant, g any real num-
ber, and p, the probability associated with the nth microstate
(Y ,p,=1), with the proviso that the sum must be carried
out over states with nonzero probabilities. It can be immedi-
ately proved that the well-known additive Shannon’s entropy
is recovered as a special case of (1): lim,_,;S,
=—kg =¥_ p.Inp, (kg is Boltzmann’s constant).

The physics is an extensive one only for g= 1. Otherwise,
we are led into the realm of nonextensivity [3, 5, 6]. Indeed,
let {p,} and {p,,} be two distributions associated with two
independent systems (so that the joint probability is given by

Pnm=Pn Pp,)- Then

S,({Pum}) _ Ss({Pa}) + S,({pnh)
k Tk k
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Many properties and diverse applications of this proposal
have been given by a number of authors (see, for example,
Refs. [4—27]). Through the usual variational procedures, a
generalized (power-law instead of exponential) form for the
distribution functions p, has been found. Consistency with a
generalized thermodynamics has also been established [5].
More specifically, this formalism has found applications in
self-gravitating systems [7,8], Lévy-like anomalous superdif-
fusion [9], optimization techniques (simulated annealing)
[10], hydrogen atom specific heat [11], correlated anomalous
diffusion [12], ferrofluidlike systems [13], cosmic back-
ground radiation [14], two-dimensional turbulence [15],
among others. The generalized entropy for a quantum system
characterized by the density operator p reads
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while the g-expectation value (to be associated with physical
observables) of a quantum-mechanical operator O is defined
as

(0)=t1(p 7 0). @
Let us consider a system of identical spins each of mag-
aD=g e/(2mc) .S%(i), where S ®
=(#/2) 6O (& denotes the Pauli spin métrices). The poten-
tial energy arising from the interaction of N localized spins

with an external uniform magnetic field H along the z axis is
written as

netic moment

0. A=-22p3,, 5)

tt)

where we have introduced the elementary magneton,
wo=efi/2me, and the collective operator S=3"_ SO for

the total spin. The eigenvectors of S2 and § »» Which consti-
tute a basis of the concomitant 2V-dimensional space, are
labeled as |S,M) with S=6, , N2, M=-8,...,S,
and §=N/2—[N/2]=0(1/2) if N is even (odd). The corre-
sponding multiplicities are Y(S,M)=Y(S)=N! (2S+1)/
[(N/2=8)! (N2+S+1)!].

Within the framework of a generalized statistics of index
g, the mean magnetic moment of the system at temperature
T is given by

2= (8, =5 (0 §,). ©)

The statistical operator p is obtained by extremalization of

S,(p) subject to the normalization condition tr(p)=1, and
to the assumed knowledge of (%) q- From Egs. (3)—(5) we
arrive at

R 1 g0 1/(1—gq)
=7 1+/3(1—q)—~—HS} (7
q
with 8=1/kT and the partition function defined as
/(1-q)
EHo
zZ,= ( [1+,B(1 q)—HS} ) (8)

We easily verify that the g—1 limit yields the standard,
Boltzmann-Gibbs, exponential form for the density operator.
The magnetization ./, as derived from the function Z,
reads [5]

19 (1 z, q)
‘%Q—EE q—l * (9)

It is to be remarked that, on computing expectation values,
those states that do not satisfy the condition

[1+B(1-q)gueHM]>0 (10)
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FIG. 1. (S‘Z)q as a function of x.

must be excluded from the summation implied in the trace.
In other words, these states are assigned a probability ampli-
tude pg r=(S,M|p|S,M)=0, so that p is positive definite.
The physical origin of this cutoff condition has been given in
Ref. [8]. Let us mention here that an analogous situation is
present in quantum special relativity: the « parameter char-
acterizing the deformation of the Poincaré group could be
thought of as the upper limit of the energy of a particle [2].

We consider now the magnetic behavior of the system as
a function of (i) the number of particles, (ii) the index g (for
g>0), and (iii) the dimensionless parameter x=guy,BH. In
Figs. 1 and 2 we show the shape of the g magnetization (in
units of gug/h), (S’z)q, as a function of x, when N and g
assume different values. The study of the asymptotic cases
H<kT and H>kT allows for a simple treatment of the ef-
fects we wish to describe here. A weak external magnetic
field or high temperatures correspond to the limit x—0. In
this case, expanding (pg )7 up to first order in x and taking
an appropriate trace over the whole state space [if x is suffi-
ciently small, condition (10) is verified for all M], one finds

1 N/2
Sdq=5m 4% 2 Chpoy M (1)
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FIG. 2. (Sz)q vs x for g=0.9 and N=20, compared with its
“standard analogs.” The slope of <Sz>1 at x=0 is proportional to
N, and its saturation value at x=o0 is N/2. When g# 1, we define
the slope and saturation value to be proportional to N, Sﬁ and N,
respectively.
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FIG. 3. ln(Ne(}f /N) as a function of ¢ (a) and N (b) (the condition N, 6%21 has been imposed); In(N & /N) versus g (c) and N (d).

where Cj,:l denotes the usual binomial coefficient. From this
approximation we calculate the generalized isothermic mag-
netic susceptibility

assuming g € (0,1), in the computation of the traces the only
states which contribute are those with M >0, for each
S$=36, ...,N/2. We compare the saturation value of the mag-
netization (in units of gug /%),

oM, (gmo)?
Xo(N;T)= lim( qu) = f: o Ng2V00, (12) ) N2 -
H—0 T lim<Sz>q= 2 Cx/z—M MYA-q) (14)
— 00 M=65
which for g=1 is simply proportional to the number of par- ¥
ticles, N. For g # 1, we define the (low H/kT) effective par-  with the corresponding one for g= 1, which is simply
ticle number N’ by means of the identification
R N
Xg(N;T)=x1(N5:T) lim ($;); =7 (15)
X—©

(see Fig. 2) so that

We therefore introduce the (high H/kT) effective particle

Ngﬁ(q,N)=Nq oN(1-q) (13) number N in the following way (see Fig. 2):
. . N/2 1—¢q
In Figs. 3(a) ar.1d 3(b) we pl.ot ln(Ngf'f/N) as a function of g Nean=2| S o M- (16)
and N, respectively, for various particle numbers and g pa- off\d> = T N2-M
rameters (the condition N%=1 has been imposed). If N>1
and ge(0,1) are such that NIn2 Z—In(g)/(1—g), then the  For every fixed g, 0<g<1, it can be seen that

effective size of the system will be N, gff ZN. Therefore, for N
and g, g<<1, not very small, the apparent number of spins is
larger than the actual one. The function In(N% /N) exhibits a
maximum at g = 1/(N1n2) where N%~2" if N>1[Fig. 3(a)].
Meanwhile, the nonextensive, subadditive theory obtained
when g exceeds 1 gives the illusion of a number of spins
smaller than N.

The other extreme situation, that of a high magnetic field
or low temperatures, corresponds to x—co. In this case and

N7%{g,N)=N, if and only if N= 1 or 2; moreover, the
system seems to be larger if N=3. We depict in Figs. 3(c)
and 3(d) the function In(N,s/N) vs g and N, respectively.
[The case g>1 in this limit is of no interest. The sum in Eq.
(14), now to run between M = — N/2 and M = — §, converges
when g—1% to —1 (—1/2) for N even (odd). Then, no
effective particle number is defined in this situation.]

We mention that there exist pairs of values (q,N) for
which the system, as described by a generalized statistics,
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has the same ‘“‘standard analog” in both limits, with an ef-
fective number of particles N%(q,N)=N(q,N). In the
intermediate region H/kT~ 1, however, the g magnetization
can differ from .Z; .

Summing up, we have shown that the effective size of the
system is not independent of the statistical averaging proce-
dure. Here, different g statistics yield different magnetiza-
tions. An observer that measures the magnetization would
make an estimation of the number of particles involved that
could be quite wrong, if she or he assumes a given value for
q that is not the one appropriate to the environmental cir-
cumstances that govern the associated physical process. Of
course, if g=1, no problems arise. But g might be different
from 1. It has been shown that in systems where long-range
interactions (like the gravitational forces) are present, g
could be significantly lower than unity [8]. Is it perhaps con-
ceivable that statistical factors are involved in the dark mat-
ter paradoxes? The present contribution shows that a sort of
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“dark magnetism” is indeed conceivable. As a final remark,
the whole picture that has emerged here is so similar to that
exhibited by Bacry [1], that the possible connection that has
been recently advanced [6] between quantum groups and
nonextensive statistical mechanics comes out reinforced. In
particular, it is worth stressing that, in both formalisms, the
internal energy is generically nonextensive. In the same
spirit, we recall two other important facts, namely that the
laws of additivity of spins considered here and for particles
at rest in the deformed Poincaré group agree, and also that
cutoffs appear naturally in both treatments.
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